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Abstract

In this paper, we develop an LA-module over LA-ring to a new concept namely LA-semimodule
over LA-semiring. Let S be a non-empty set with two binary operations "+" and "+". Set S
is called a left almost semiring (LA-semiring) if (S,+) is an LA-semigroup, (S, *) is an LA-
semigroup and satisfying left and right distributive law of "x" over "+" hold. Let (S, +,*) is
an LA-semiring with left additive identity equal to 0s and left multiplicative identity equal to
1, non-empty set M is called an LA-semimodule over S if 1) (M, +) is an LA-semigroup with
left identity, 2) the map S x M — M, (s,m) +— sm where s € S and m € M satisfies i)
s(m+mn) = sm+sn,ii) (r+s)m = rm+ sm, iii) r(sm) = s(rm), iv) 1*m = m, forallr,s € R,
and m,n € M. Then, we investigate the basic properties and the Isomorphims Theorem for
LA-semimodule over LA-semiring.

Keywords: LA-semigroup; LA-semiring; LA-semimodule.


https://einspem.upm.edu.my/journal

A. Andari and A. Rouf Malaysian ]. Math. Sci. 15(3): 357-368 (2021) 357 - 368

1 Introduction

The concept of AG-groupoid is a generalization of commutative semigroup concept without
associative law that introduced by [4]. A grupoid S is called AG-groupoid if its element satisfy
the left invertive law i.e (ab)c = (cb)a for all a,b,c € S. In [1], AG-groupoid is also known as
left almost semigroup (LA-semigroup). A groupoid G is called medial if G satisfy the medial
law i.e (ab)(cd) = (ac)(bd) for all a,b,c,d € G. A groupoid G is called paramedial if satisfy the
paramedial law i.e (ab)(cd) = (db)(ca) foralla, b, c,d € G [1]. An LA-semigroup S always satisfies
the medial law [[1], Lemma 1.1(i) | while an LA-semigroup S with left identity e always satisfies
the paramedial law [[1], Lemma 1.2 (ii)]. An LA-semigroup S with left identity e also satisfies
a(bc) = b(ac) for all a,b,c € S [[6], Lemma 4].

The works of [3] and [5] extend the notion of LA-semigroup into LA-group. An LA-semigroup
G is called an LA-group if there exists left identity e € G such that ea = a for all ¢ € G and for all
a € Gthereexistsa™' € Gsuchthata™'a = aa™! = e. Then, [8] give the properties of cancellative
LA-semigroup. An element a of an LA-semigroup S is called left cancellative if ax = ay implies
x =y forall x,y € S. Similarly, an element a of an LA-semigroup S is called right cancellative if
za = ya imples x = y for all z,y € S. An element ¢ of an LA-semigroup S is called cancellative if
it is both left and right cancellative. An LA-semigroup S is called left cancellative if every element
of § is left cancellative. Similarly, an LA-semigroup S is called right cancellative if every element
of S is right cancellative and it is called cancellative if every element of S is cancellative. A finite
cancellative LA-semigroup is an LA-group [8].

In 2011, [9] extended LA-group to a non-associative structure with respect to both binary op-
erations '+’ and "~ namely left almost ring (LA-ring). A left almost ring means a nonempty set R
with at least two element such that (R, +) is an LA-group, (R, -) is an LA-semigroup and both left
and right distributive laws hold.

Next, [10] extended LA-group and LA-ring concept to LA-module. Let (R, +, -) be an LA-ring
with left identity 1. An LA-group (M, +) is called an LA-module over R, if the map R x M — M
is defined (r,m) — rm € M, and where r € R and m € M satisfies : (m; + ma) = rmy + rma,
(r1 +re)m =rim—+rom, ri(rom) =ro(rym), 1 -m =m, forall r,r1,r, € Rand m,my, ms € M.

Semiring S is a non-empty set with two binary operation that satisfy (.5, +) is monoid com-
mutative, (S, -) is semigroup, both left and right distributive laws hold [2]. Then, [2] give the
definition of semimodule over semiring and some property of it. After that, [7] extend LA-ring
and semiring into LA-semiring. In this paper, we will generalize LA-module over LA-ring into
LA-semimodule over LA-semiring. Then, we investigate the properties of LA-semimodule over
LA-semiring, along with all that associated with LA-semimodule.

2 Result and Discussion

2.1 LA-Semimodule

In this section, we give the definition of an LA-semimodule over an LA-semiring. we study
some examples of LA-semimodule and discuss the elementary properties of an LA-semimodule.

Definition 2.1 ([7]). A left almost semiring (LA-semiring) is a non empty set S with two binary opera-
tions” + 7 and ” " that satisfying the following conditions:
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i. (S,+) is an LA-semigroup.
ii. (S,x) is an LA-semigroup.

iii. Both left and right distributive laws holds:
xx(y+z)=c*xy+axz
(y+z)xsz=y*xz+z2xx
forallz,y,z € S.

In this paper, all LA-semiring S are LA-semiring with left additive identity equal to 0s and left
multiplicative identity equal to 1.

Example 2.1. Here some examples of LA-semiring:
i. All LA-ring are LA-semiring.

ii. Let S = Z,, n € N and define binary operation

0:5x8—=S5
(a,b) »aSb=>b—a,

and

¥x:Sx§—=8
(a,b) — axb=ab.

Note that for any a,b, c € S, we have

(acb)oc=c—b+a
=a—-b+c
=(cob)oa.

So, (S, ©) is an LA-semigroup. Furthermore, note that
(aob)oc=c—bt+a#c—b—a=a0 (bOc)
and
aob=b—a#*a—-b=b65a.

Hence, (S, ©) is not a commutative semigroup. Since (S, *) is a commutative monoid then (S, x) is
an LA-semigroup. Next, note that

(aeb)e=(b—a)c=bc—ac=acSbec
aboc)=alc—b) =ac—ab=abo ac

forany a,b,c € S. Therefore, (S, S, x) is an LA-semiring.
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Definition 2.2. Let (S, +, *) be an LA-semiring. A set M is called LA-semimodule over LA-semiring S
if satisfies:

i. (M,+) is an LA-semigroup with left identity.

ii. Defined map - : S x M — M where (r,m) — rm, r € S, m € M and satisfies:

(a) r(m+n)=rm+rn

(b) (r+s)ym=rm+ sm

(¢) r(sm) = s(rm)

(d) 1-m=m, forallr,s € Sand m,n € M.

In this paper, all LA-semimodule M are LA-semimodule with left identity equal to 0x;.

Example 2.2. Here some examples of LA-semimodule:

i. All LA-module over LA-ring R are LA-semimodule over R.
ii. All LA-semiring S are LA-semimodule over itself.

Theorem 2.1. Let (M, +) be a cancellative LA-semimodule over LA-semiring (S, +,*). Then, for all
s € Sand a € M satisfies:

i s- 0]\/[ = OM

il OS ca = OM
Proof. Let a be an arbitrary element in M and s be an arbitrary element in .S, then the following
conditions are hold:

i. Since M is an LA-semimodule with left identity 05; then

S-OM:S(ON[—FOA[){:}S'OM:S-OM+S-OM
S0y +s-0py=s5-0pp+s-0pp

since M is cancellative then 0); = s - 0j;.

ii. Since S is an LA-semiring with left additive identity Og then

0s-a=(0s+0s)a=0s5-a=0s-a+0s5-a
&0y +0s-a=0g-a+0s-a

since M is cancellative then 0;; = Og - a.

360



A. Andari and A. Rouf Malaysian J. Math. Sci. 15(3): 357-368 (2021) 357 - 368
2.2 LA-Subsemimodule

In this section, we give the definition of an LA-subsemimodule of LA-semimodule. Then, we
initiate the following definition.

Definition 2.3. Let M be an LA-semimodule over LA-semiring S and N be a non empty subset of M.
LA-subsemigroup N is called LA-subsemimodule over S, if SN C N, ie,sn € N, forall s € S and
n e N.

Remark 2.1. Let M be an LA-semimodule over LA-semiring S. Then M it selfand {0} are LA-subsemimodule
over LA-semiring S and its called improper LA-subsemimodule.

Corollary 2.1. Let M be a cancellative LA-semimodule over LA-semiring S and N be an LA-subsemimodule
of M. Then, N cancellative and Op; € N.

Proof. The first statement is clear. The second statement, let a be an arbitrary element in M. Since
N is an LA-subsemimodule of M and M is a cancellative LA-semimodule then 0;; = 0g - a €
N. O

Theorem 2.2. Let M be a cancellative LA-semimodule over LA-semiring S. If N; are LA-subsemimodule
of M fori=1,2,3,...,n, then (| N, is an LA-subsemimodule of M.

i=1

Proof. Since N; is an LA-subsemimodule then 0y, € N; foralli =1,2,3,...,n. Hence, (| N; # 0.

i=1
Clear that ﬂ N; C M. Leta,b € ﬂ N;, then a,b € N; foralli = 1,2,3,...,n. Since N; are an
LA-subsemlmodule then a+be N and sa € N;foralls € S,i=1,2,...,n. As a consequence
sa € ﬂ N;. Hence ﬂ N; also an LA-subsemimodule of M. O

i=1 =1

Theorem 2.3. Let M be an LA-semimodule over LA-semiring S. If N; are a subsemimodule of M for

i=1,2,...,n, then Y N, is a subsemimodule.

i=1
Proof Since N; 1s an LA—subsermmodule then N; # ( forall¢ = 1,2,3,...,n. As a consequence
ZN # () and ZN C M. Leta,be ZN wherea =a1 +as+...+a,and b= by + by + ... + b,
w1th a;,b; € N; for alli =1,2,3,. n Smce N; are LA-subsemimodule, then we have

a+b=(a1+azs+..4+ay)+ (b1 +ba+ ...+ by)

(

={a1+ ... +an-1)+an)+ (b1 + ... +bp_1)+by)

={a1+ ... +an—1)+ b1+ ... +bp_1)) + (an +by)

=((a1+ ..+ an—2+an_1)+ (b1 + ... +bp2) +by_1) + (an + by)
=((a1+ ..+ an2+ b1+ .. +by2)) +(an_1+by1)+ (an+by)
= (((a1 + bl) + (a2 +b2)) +...) + (an + bn)

= (

a1 +b1) + (ag + b2) + ... + (an + by).
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n

n
Since a; + b; € N; thena +b € > N,. Hence, > N, is an LA-subsemigroup. Next, let s be an
i=1 i=1
arbitrary element in S, then

n
sa=s(a; +ag+ ... +a,) = sa; —|—sa2+...—|—san€ZNi.
i=1

Hence > N; also LA-subsemimodule of M. O
i=1

Definition 2.4. Let M be an LA-semimodule over LA-semiring S and N is an LA-subsemimodule of M.
M/N ={a+ N :a € M} is called a quotient LA-semimodule.

Note that the binary operation in quotient LA-semimodule M/N are '+’ and ’-’. Since M is
medial then we have

(a+N)+(b+N)=(a+b)+(N+N)
=(a+b)+N.

Since M is an LA-semimodule over S, and N is an LA-subsemimodule then
s(a+ N)=sa+ sN =sa+ N.
Since M contains left identity and M satisfy medial law then
N+(a+N)=(0+N)+(a+N)=(0+a)+(N+N)=a+ N.
Forany a4+ N,b+ N € M/N and s € S. Hence, N is left identity element in M/ /N.

Proposition 2.1. Let M be an LA-semimodule over LA-semiring S and N be an LA-subsemimodule of
M. If M is cancellative then M /N is cancellative.

Proof. Leta + N,b+ N and ¢+ N be arbitrary elements in M /N then

(a+N)+(c+N)=0b+N)+(c+N)=(N+N)+(c+a)=(N+N)+(c+b)
= N+ (ct+a)=N-+(c+b)
= 0+N)+(c+a)=0+N)+(c+b)
=0+c)+(N+a)=(04+c)+ (N +D)
=c+(N+a)=c+ (N+b)
=N+a=N+b
= (0+N)+a=(0+N)+b
= (a+N)+0=(b+N)+0
= (a+N)=(b+N).

Thus, M/N is right cancellative. Since M /N is an LA-semigroup with left identity then M /N is
left cancellative too. Therefore, M /N is cancellative. O

2.3 LA-Semimodule Homomorpishm
In this section, we give the definition of LA-semimodule homomorpishm and its basic properties.
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Definition 2.5. Let M, M’ be LA-semimodule over LA-semiring S. A map ¢ : M — M’ is called LA-
semimodule homomorpishm if for any s € S and m,n € M, satisfies the following conditions:

i. p(m+n)=e(m)+¢(n)
ii. p(sm) = sp(m)

Corollary 2.2. Let M, M’ be LA-semimodule over LA-semiring S and map ¢ : M — M’ be an LA-
semimodule homomorphism. If M and M' are cancellative then p(0nr) = Oap.

Proof. Let a be an arbitrary element in M and = € M’ where z = ¢(a), then

pla) =z < 0gp(a) =0g - x
= QO(OS . a) =0
< ¢(0ar) = Opy.

Remark 2.2 ([8]). LA-semigroup M is an LA-group iff M is finite cancellative.

Lemma 2.1. Let M, M’ be finite cancellative LA-semimodule over LA-semiring S and map ¢ : M — M’
be an LA-semimodule homomorphism. If M and M’ are finite cancellative then ¢(—a) = —p(a) for all
a€ M.

Proof. Let a be an arbitrary element in M. Since M is finite cancellative then there exist —a € M
such that —a + a = 0p. Since ¢ is LA-semimodule homomorphism and M’ is finite cancellative
then

p(—a+a) =p(0n) & p(—a) + p(a) = 0
& p(—a) + ¢(a) — p(a) = 0n — p(a)
& p(—a) = —p(a).

O

Theorem 2.4. Let M, M’ be cancellative LA-semimodule over LA-semiring S and map ¢ : M — M’ be
an LA-semimodule homomorpishm, then the following conditions are holds:

i. If P is an LA-subsemimodule of M, then o(P) is an LA-subsemimodule of M'.
ii. If Q is an LA-subsemimodule of M', then ¢~ (Q) is an LA-subsemimodule of M.

Proof. Note that

e(P)={zxe M|z =yp(a),a € P}
e 1 (Q) = {ae M|p(a) € Q}.

Then, consider that
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i. Since P is an LA-subsemimodule and ¢ is an LA-semimodule homomorphism then P # 0
and ¢(P) # 0. Clear that o(P) C M’'. Let z,y be two arbitrary elements in ¢(P) where
z = ¢(a),y = ¢(b),a,b € Pthenx +y = p(a) + ¢(b) = w(a + b). Since P is an LA-
subsemimodule then a +b € P. Hence, x +y € ¢(P) and ¢(P) is an LA-subsemigroup. Let
s be an arbitrary element in S, then sz = s¢(a) = ¢(sa). Since P is an LA-subsemimodule
then sa € P. So, sz € p(P). Therefore, ¢(P) is an LA-subsemimodule of M.

ii. Since (Q is an LA-subsemimodule of M’ and M’ is a cancellative LA-semimodule then 0,/ €
Q. Hence, 05,/ = ¢(a) implies a = 0,7, then p=1(Q) # 0. Clear that p=*(Q) C M. Let a,bbe
two arbitrary element in ¢ ~1(Q), then ¢(a + b) = p(a) + p(b) € Q. Hence, a +b € ¢~ 1(Q)
and ¢~ !(Q) is an LA-subsemigroup. Let s € S then p(sa) = sp(a). Since p(a) € Q and Q is
an LA-subsemimodule then s¢(a) € Q. Therefore, = (Q) is an LA-subsemimodule of M.

O

Definition 2.6. Let ¢ : M — M’ be an LA-semimodule homomorpishm. Kernel of ¢ is defined by
Ker(p) ={m € M : p(m) = 0} and image of v is defined by Im(p) = {¢(m) : m € M}.

Lemma 2.2. Let M, M’ be cancellative LA-semimodule over LA-semiring S and map ¢ : M — M’
be an LA-semimodule homomorpishm, then Ker(p) and Im(yp) are LA-subsemimodule of M and M’,
respectively.

Proof. Since p(0pr) = O then Ker(p) # (. Clear that Ker(p) C M. Let a,b be two arbitary
element in Ker(yp) then p(a +b) = ¢(a) + ¢(b) = 0p-. Hence, a + b € Ker(p) and Ker(yp) is an
LA-subsemigroup of M. Let s be an arbitary element in S, then ¢(sa) = sp(a) = s - 0p = Opsr.
Therefore, sa € Ker(p) and Ker(p) is an LA-subsemimodule of M.

Next, since ¢(0p7) = 0pr/, then Im(p) # 0. Clear that Im(yp) C M’. Let x,y be two arbitary
element in Im(y) where x = ¢(a),y = ¢(b), a,b € M then z + y = p(a) + ¢(b) = ¢(a + b). Since
a+be Mthenz +y € Im(p) and I'm(yp) is an LA-subsemigroup of M’. Let s be an arbitrary
element in S then sz = sp(a) = p(sa). Since M is an LA-subsemimodule then sa € M. Hence,
sz € Im(P) and I'm(P) is an LA-subsemimodule of M’. O

Proposition 2.2. Let M, M’ be finite cancellative LA-semimodule over LA-semiring S and map ¢ : M —
M’ be an LA-semimodule homomorpishm. Map ¢ is one-one if and only if Ker(p) = {0a}.

Proof. (=) Let a be an arbitrary element in Ker(y), then ¢(a) = 0. Since M, M’ are cancellative
LA-semimodule and ¢ is an LA-semimodule homomorphism then ¢(0as) = 0as. Since ¢ is one-
one and p(a) = 0pr = ¢(0pr), then a = 0py. Finally, ker(yp) = {0}

(<) Let Ker(¢) = {Op} and a, b be two arbitrary elements in M such that p(a) = ¢(b). Since
M, M’ are finite cancellative LA-semigroup, then M, M’ are LA-group. Hence, p(a) = ¢(b) im-
plies ¢(a) — ¢(b) = Oap. Since ¢ is an LA-semimodule homomorpishm, then ¢(a — b) = Op.

Hence, a — b € Ker(p). Since Ker(p) = {Op} then a — b = 0j7. As consequence, a = b. So, ¢ is
one-one. O

2.4 Isomorpishm Theorem for LA-Semimodule

In this section, we discuss about the isomorphism theorem in LA-semimodule over LA-semiring.
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Theorem 2.5. Let M, M’ be finite cancellative LA-semimodule over LA-semiring S, 6 : M — M’ be an
LA-semimodule epimorphism, and p : M — M/Ker(0) be a natural LA-semimodule homomorphism.
Then, there exist an LA-semimodule isomorphism o : M/N — M', where N = Ker(6) and make the
diagram below commute.

M/N

Proof. Since M, M’ is a cancellative LA-semimodule and 6 is an LA-semimodule homomorphism
then N = Ker(6) is an LA-subsemimodule of M. Therefore, M /N is a quotient LA-semimodule.
Next, consider the mapping
o:M/N — M’
a+Nw—o(a+N)=0(a)=ad.

Then, we will show that ¢ is an isomorphism. Note that,

i. First, we will show that the mapping is well defined. Since M and M’ are finite cancellative
LA-semimodule then M/N is a finite cancellative quotient LA-semimodule. Hence, M/N
and M’ are LA-semigroup. Let a + N,b + N be two arbitrary elements in A//N such that
a+ N =0+ N, then

a+N=b+N=a—-b+N=N

=a—-beN

= 0(a—1b) =0
=60(a)—0(b) =0

= 0(a) =6(b
=o(a+N)=0c(b+ N)

Thus o is well defined.
ii. Leta+ N and b+ N be two arbitrary elements of M /N such thato(a+ N) = o(b+ N), then
ola+N)=0c(b+ N)=60(a) =06(b)

= 0(a) —6(b) =0

= 0(a—b) =0

=a—-beN

=a—b+N=N

=a+N=b+ N.

Therefore, o is one-one.
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iii. Next we will show that o is onto. Let ¢’ be an arbitary element of M’. Since 6 is an epimor-
phism from M to M’, then there is an element a in M such that 6(a) = a’. Since 6(a) being
the o-image of the coset a + N in M /N, then o’ = §(a) = o(a + N). Thus, o is onto.

iv. Finally, o is an LA-semimodule homomorpishm, i.e
(a) Leta+ N,b+ N be two arbitrary elements in A//N then
olla+ N)+ (b+ N)] =

(b) Leta+ N be an arbitrary element in /N and s be an arbitrary element in S then
ols(a+ N)] =o(sa+ N)
= 0(sa)
= s0(a)
= so(a+ N).

Hence, o is an LA-semimodule isomorpishm from M /N to M’ or M /N = M’. O

Theorem 2.6. Let M be a finite cancellative LA-semimodule over LA-semiring S. If I and J are LA-

1 I+J ~ I
subsemimodule of M, then 1= = =

Proof. Since I and J are LA-subsemimodule of M, then I +J is an LA-subsemimodule of M. Since

J C I+ J and J is an LA-subsemimodule, then % is a quotient LA-semimodule. Since I and

J are LA-subsemimodule, then I N J is an LA-subsemimodule. Since I N J C I, then ﬁ is a
quotient LA-semimodule. Next, define a mapping

I
0:]%Lj

a—6(a)=(a+0)+J=a+J

We will prove this theorem by using Theorem 2.5, then note that

i. Clear that ¢ is well defined. Let a,b be two arbitrary elements in I and s be an arbitrary
element in S, then

(a) ba+b)=(a+b)+JT=(a+J)+(b+J)=06(a)+0(b).
(b) 6(sa) = (sa)+ J = s(a+ J) = sb(a).

Thus, 6 is an LA-semimodule homomorpishm. Next, note that for any a + J € #, then
exists a € I such that 6(a) = a + J. Therefore, 6 is an onto homomorpishm.

ii. Since J is a left identity in quotient LA-semimodule IiJJ, then

Ker(0) ={a€l:0(a)=J}
={ael:a+J=J}

={a€l:acJ}
={acInJ}
=1INndJ
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Since 6 is an LA-semimodule epimorphism, Ker(f) = I N J and M is finite cancellative then by

I+J ~ I
Theorem 2.5 we have ~= = +=5. O

Theorem 2.7. Let M be a finite cancellative LA-semimodule over LA-semiring S. If J and K are LA-

subsemimodule of M, where J C K, then 1}»{4;:]] =3

Proof. Clear that M/J, M/K and K/J are quotient LA—semimodule over S. Since K C M then
K/J C M/J. Hence, K/J is an LA-subsemimodule of M/.J and e / 5 7 is an quotient LA-semimodule.
Define a mapping

0:M/J— M/K
a+J—0a+J)=a+ K.

Then, note that

i. Since M is cancellative then M/J and M /K are cancellative. Hence, §(J) = K implies 6 is
well defined. Then, we will show that ¢ is an LA-semimodule homomorphism

(a) Forany a+ J,b+ J € M/J, we have

Olla+J)+ b+ J)]=0[(a+d)+ J]
=(a+b)+K
=(a+K)+(b+K)
=0(a+J)+60(0b+J).

(b) Foranya+ J € M/J and s € S, we have

O[s(a+ J)] =0(sa+ J)
=sa+ K
=s(a+ K)
=s0(a+J).

Hence, 6 is an LA-semimodule homomorpishm.
Furthermore, since J C K then for any a + K € M/K, we can choose a + J € M/J such
that f(a + J) = a + K. Thus, 0 is an epimorphism.

ii. We will show that Ker(0) = K/J, then consider that

Ker(@)={a+JeM/J:0(a+J)=K}
={a+JeM/]:a+ K=K}
={a+JeM/J:ac K}
={a+JeK/J}=K/J.

Now, since 6 is an LA-semimodule epimorphism, Ker(0) = K/J and M/J, M /K are finite can-

cellative, then by Theorem 2.5 we have ];g j ~ M O
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3 Conclusions

Any LA-semimodule over LA-semiring are satisfy The First Isomorphism Theorem, The Sec-
ond Isomorphism Theorem and The Third Isomorphism Theorem. Also, LA-semimodule over
LA-semiring are satisfy some properties like properties of module over ring.
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